3.3.25 \(\int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [225]

3.3.25.1 Optimal result
3.3.25.2 Mathematica [A] (verified)
3.3.25.3 Rubi [A] (verified)
3.3.25.4 Maple [B] (verified)
3.3.25.5 Fricas [A] (verification not implemented)
3.3.25.6 Sympy [F(-1)]
3.3.25.7 Maxima [B] (verification not implemented)
3.3.25.8 Giac [F]
3.3.25.9 Mupad [F(-1)]

3.3.25.1 Optimal result

Integrand size = 35, antiderivative size = 131 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {\sqrt {a} (4 A+3 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a (4 A+3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \sec (c+d x)}} \]

output
1/4*(4*A+3*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d 
+1/4*a*(4*A+3*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/2* 
a*B*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 
3.3.25.2 Mathematica [A] (verified)

Time = 0.54 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.92 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {a \left ((4 A+3 B) \arcsin \left (\sqrt {1-\sec (c+d x)}\right )+2 B \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+(4 A+3 B) \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]) 
,x]
 
output
(a*((4*A + 3*B)*ArcSin[Sqrt[1 - Sec[c + d*x]]] + 2*B*Sqrt[1 - Sec[c + d*x] 
]*Sec[c + d*x]^(3/2) + (4*A + 3*B)*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x] 
)])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 
3.3.25.3 Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.94, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4504, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {1}{4} (4 A+3 B) \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (4 A+3 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4290

\(\displaystyle \frac {1}{4} (4 A+3 B) \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} (4 A+3 B) \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{4} (4 A+3 B) \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{4} (4 A+3 B) \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\)

input
Int[Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 
output
(a*B*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + ((4 
*A + 3*B)*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x] 
]])/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))) 
/4
 

3.3.25.3.1 Defintions of rubi rules used

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 
3.3.25.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(343\) vs. \(2(111)=222\).

Time = 6.78 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.63

method result size
default \(\frac {\left (4 A \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-4 A \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+8 A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+3 B \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 B \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+6 B \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+4 B \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\right ) \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(344\)
parts \(\frac {A \sec \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\cos \left (d x +c \right )^{2} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )^{2}+2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )\right )}{2 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {B \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-3 \cos \left (d x +c \right )^{3} \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+6 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )^{2}+4 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )\right )}{8 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(397\)

input
int(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x,method=_RET 
URNVERBOSE)
 
output
1/8/d*(4*A*cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)-sin(d*x+c)+1)/(cos(d*x+c)+1 
)/(-1/(cos(d*x+c)+1))^(1/2))-4*A*cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)+sin(d 
*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+8*A*cos(d*x+c)*sin(d*x+ 
c)*(-1/(cos(d*x+c)+1))^(1/2)+3*B*cos(d*x+c)^2*arctan(1/2*(cos(d*x+c)-sin(d 
*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-3*B*cos(d*x+c)^2*arctan 
(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))+6 
*B*cos(d*x+c)*sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2)+4*B*sin(d*x+c)*(-1/(cos 
(d*x+c)+1))^(1/2))*sec(d*x+c)^(3/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1 
)/(-1/(cos(d*x+c)+1))^(1/2)
 
3.3.25.5 Fricas [A] (verification not implemented)

Time = 0.41 (sec) , antiderivative size = 402, normalized size of antiderivative = 3.07 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\left [\frac {{\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {{\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left ({\left (4 \, A + 3 \, B\right )} \cos \left (d x + c\right ) + 2 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \]

input
integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="fricas")
 
output
[1/16*(((4*A + 3*B)*cos(d*x + c)^2 + (4*A + 3*B)*cos(d*x + c))*sqrt(a)*log 
((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + 
c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos( 
d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*((4*A + 3*B)*cos(d 
*x + c) + 2*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(c 
os(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 1/8*(((4*A + 3*B)*cos(d 
*x + c)^2 + (4*A + 3*B)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*c 
os(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x 
+ c)^2 - a*cos(d*x + c) - 2*a)) + 2*((4*A + 3*B)*cos(d*x + c) + 2*B)*sqrt( 
(a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos 
(d*x + c)^2 + d*cos(d*x + c))]
 
3.3.25.6 Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.25.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1927 vs. \(2 (111) = 222\).

Time = 0.59 (sec) , antiderivative size = 1927, normalized size of antiderivative = 14.71 \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="maxima")
 
output
-1/16*(4*(4*sqrt(2)*cos(3/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x 
 + 2*c) - 4*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))*sin(2*d*x 
 + 2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 
1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan 
2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), 
 cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 
 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*l 
og(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(si 
n(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos 
(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) 
- (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2 
*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d* 
x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x 
 + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (c 
os(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos 
(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + 
c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c 
))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 4*(sqr 
t(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c 
))) + 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + ...
 
3.3.25.8 Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

input
integrate(sec(d*x+c)^(3/2)*(A+B*sec(d*x+c))*(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="giac")
 
output
sage0*x
 
3.3.25.9 Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

input
int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/2) 
,x)
 
output
int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/2) 
, x)